Sort a full object of class assoc_scores
based on some criterion. It's the
same that print
does but with a bit more flexibility.
Usage
# S3 method for assoc_scores
sort(x, decreasing = TRUE, sort_order = "none", ...)
Arguments
- x
Object of class
assoc_scores
.- decreasing
Boolean value.
If
sort_order = "alpha"
anddecreasing = FALSE
, the rows will follow the alphabetic order of the types. Ifdecreasing = TRUE
instead, it will follow an inverted alphabetic order (from Z to A). This follows the behavior of applyingsort()
to a character vector: note that the default value is probably not what you would want.If
sort_order
is a column for which a lower value indicates a higher association, i.e. it's a form of p-value,decreasing = TRUE
will place lower values on top and higher values at the bottom.For any other column,
decreasing = TRUE
will place higher values on top and lower values at the bottom.- sort_order
Criterion to order the rows. Possible values are
"alpha"
(meaning that the items are to be sorted alphabetically),"none"
(meaning that the items are not to be sorted) and any present column name.- ...
Additional arguments.
Value
An object of class assoc_scores
.
Examples
a <- c(10, 30, 15, 1)
b <- c(200, 1000, 5000, 300)
c <- c(100, 14, 16, 4)
d <- c(300, 5000, 10000, 6000)
types <- c("four", "fictitious", "toy", "examples")
(scores <- assoc_abcd(a, b, c, d, types = types))
#> Association scores (types in list: 4)
#> type a PMI G_signed| b c d dir exp_a DP_rows
#> 1 four 10 -1.921 -45.432| 200 100 300 -1 37.869 -0.202
#> 2 fictitious 30 2.000 56.959|1000 14 5000 1 7.498 0.026
#> 3 toy 15 0.536 2.984|5000 16 10000 1 10.343 0.001
#> 4 examples 1 2.067 1.473| 300 4 6000 1 0.239 0.003
#> <number of extra columns to the right: 7>
#>
print(scores, sort_order = "PMI")
#> Association scores (types in list: 4, sort order criterion: PMI)
#> type a PMI G_signed| b c d dir exp_a DP_rows
#> 1 examples 1 2.067 1.473| 300 4 6000 1 0.239 0.003
#> 2 fictitious 30 2.000 56.959|1000 14 5000 1 7.498 0.026
#> 3 toy 15 0.536 2.984|5000 16 10000 1 10.343 0.001
#> 4 four 10 -1.921 -45.432| 200 100 300 -1 37.869 -0.202
#> <number of extra columns to the right: 7>
#>
sorted_scores <- sort(scores, sort_order = "PMI")
sorted_scores
#> Association scores (types in list: 4)
#> type a PMI G_signed| b c d dir exp_a DP_rows
#> 1 examples 1 2.067 1.473| 300 4 6000 1 0.239 0.003
#> 2 fictitious 30 2.000 56.959|1000 14 5000 1 7.498 0.026
#> 3 toy 15 0.536 2.984|5000 16 10000 1 10.343 0.001
#> 4 four 10 -1.921 -45.432| 200 100 300 -1 37.869 -0.202
#> <number of extra columns to the right: 7>
#>
sort(scores, decreasing = FALSE, sort_order = "PMI")
#> Association scores (types in list: 4)
#> type a PMI G_signed| b c d dir exp_a DP_rows
#> 1 four 10 -1.921 -45.432| 200 100 300 -1 37.869 -0.202
#> 2 toy 15 0.536 2.984|5000 16 10000 1 10.343 0.001
#> 3 fictitious 30 2.000 56.959|1000 14 5000 1 7.498 0.026
#> 4 examples 1 2.067 1.473| 300 4 6000 1 0.239 0.003
#> <number of extra columns to the right: 7>
#>