This method zooms in on details of an object x
based on an item y
.
When x
is of class slma
(currently the only supported class),
y
must be one of the lexical markers described in it.
Arguments
- x
An object containing global statistics for a collection of linguistic units, such as an object of class
slma
.- y
A character vector of length one representing one linguistic item.
- ...
Additional arguments.
- shorten_names
Logical. If
TRUE
, filenames in the rownames are shortened withshort_names()
.
Value
An object with details. When x
is of class slma
,
the class of the output is details.slma
, namely a list with the following items:
Examples
a_corp <- get_fnames(system.file("extdata", "cleveland", package = "mclm"))
b_corp <- get_fnames(system.file("extdata", "roosevelt", package = "mclm"))
slma_ex <- slma(a_corp, b_corp, keep_intermediate = TRUE)
#> building global frequency list for x
#> ....
#> building separate frequency lists for each document
#> ....
#> .....
#> calculating assoc scores
#> ....................
#> calculating stability measures
#> done
gov <- details(slma_ex, "government")
gov$summary
#> S_abs S_nrm S_att S_rep S_lor lor_min lor_max lor_sd
#> government 13 0.65 13 0 1.112098 0.7850339 3.172484 0.7982415
# A bit of tidy manipulation to shorten filenames
if (require("dplyr") && require("tidyr")) {
as_tibble(gov, rownames = "files") %>%
tidyr::separate(files, into = c("file_A", "file_B"), sep = "--") %>%
dplyr::mutate(dplyr::across(dplyr::starts_with("file"), short_names))
}
#> Loading required package: dplyr
#>
#> Attaching package: ‘dplyr’
#> The following object is masked from ‘package:mclm’:
#>
#> as_data_frame
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
#> Loading required package: tidyr
#> # A tibble: 20 × 12
#> file_A file_B a b c d G sig dir dir_sig log_OR
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 cleveland_s… roose… 16 1676 15 9761 23.2 1 1 1 1.83
#> 2 cleveland_s… roose… 16 1676 0 309 2.92 1 1 NA 1.81
#> 3 cleveland_s… roose… 16 1676 0 1212 14.3 1 1 1 3.17
#> 4 cleveland_s… roose… 16 1676 51 19558 15.9 1 1 1 1.30
#> 5 cleveland_s… roose… 16 1676 5 2607 11.9 1 1 1 1.60
#> 6 cleveland_s… roose… 10 1722 15 9761 9.14 1 1 1 1.33
#> 7 cleveland_s… roose… 10 1722 0 309 1.28 1 1 NA 1.33
#> 8 cleveland_s… roose… 10 1722 0 1212 7.98 1 1 1 2.69
#> 9 cleveland_s… roose… 10 1722 51 19558 4.45 1 1 1 0.801
#> 10 cleveland_s… roose… 10 1722 5 2607 4.40 1 1 1 1.11
#> 11 cleveland_s… roose… 113 19765 15 9761 31.3 1 1 1 1.31
#> 12 cleveland_s… roose… 113 19765 0 309 1.27 1 1 NA 1.27
#> 13 cleveland_s… roose… 113 19765 0 1212 9.91 1 1 1 2.63
#> 14 cleveland_s… roose… 113 19765 51 19558 23.3 1 1 1 0.785
#> 15 cleveland_s… roose… 113 19765 5 2607 8.07 1 1 1 1.09
#> 16 cleveland_s… roose… 4 823 15 9761 3.30 1 1 NA 1.15
#> 17 cleveland_s… roose… 4 823 0 309 0.915 1 1 NA 1.22
#> 18 cleveland_s… roose… 4 823 0 1212 5.40 1 1 1 2.58
#> 19 cleveland_s… roose… 4 823 51 19558 1.21 1 1 NA 0.623
#> 20 cleveland_s… roose… 4 823 5 2607 1.79 1 1 NA 0.930
#> # … with 1 more variable: log_OR_sig <dbl>